Advertising and the Evolution of Market Structure in the US car industry

P.A. Geroski
M Mazzucato
November 2001

(temporarily and mistakenly withdrawn and reinstated, without further changes, on April 2008)
Economics Research at The Open University

Economists at the OU comprise a lively group with a strong track record of internationally recognised research. Economics is practised as an open discipline, with particular emphasis on its interface with the other social sciences, development, technology, philosophy and intellectual history. Our diverse pool of students further shapes our research and teaching portfolio. We also emphasise the practical application of economics, including issues relating to debt and personal finance, innovation policy, health policy in Africa, the impact of tax and benefits on women carers, the measurement of capabilities and the analysis of happiness. Our open approach to economics encourages the use of whichever tools or techniques are most appropriate, from different strands of economic theory or, where relevant, from disciplines outside economics.

Our research is further supported by research centres established at the Open University, which have developed a significant international exposure since their foundation. These include Innovation, Knowledge and Development (IKD), International Development Centre (IDC) and Centre for Citizenship, Identities and Governance (CCIG). The members of our department also have a good history of attracting external research grants, which include ESRC, AHRB, ESF, WHO, NHS, and the UN.

Journal editorial activity includes: The Adam Smith Review (Professor Vivienne Brown, Founding editor), Feminist Economics (Professor Susan Himmelweit, Associate editor), Information Economics and Policy (Professor Mariana Mazzucato, Associate editor), and Economic Issues (Dr Andrew Trigg, Book Reviews Editor). Membership of editorial boards also includes Journal of Socio-Economics (Professor Paul Anand), Economics and Philosophy and European Journal of the History of Economic Thought (Professor Vivienne Brown), and International Journal of Economics (Dr Andrew Trigg).

Usual disclaimer:
The papers contain results of research which is the sole responsibility of the authors. Opinions expressed in these papers are hence those of the authors and do not necessarily reflect views of the University.
Abstract

This paper focuses on a single simple stylized fact which stands out from the post-war history of the US Car industry, namely that industry concentration fell just at the same time as industry advertising expenditures rose sharply. Since both events were almost certainly caused by the entry and market penetration of (largely) foreign owned car producers, this stylized fact raises interesting questions about whether – and if so, how – advertising affects entry. We use a model of consumer switching behaviour to help interpret the facts. The model predicts a simple linear association between market and advertising shares (which we observe fairly clearly at two different levels of aggregation in the data), and provides the basis for arguing that advertising can facilitate entry, but only for finite periods of time.

JEL Classification: L10, L62

Preliminary Draft: Please do not cite without the permission of the authors; comments are most welcome.
* We are obliged to the ESRC for financial support, and to Mike Scherer, Dick Schmalensee, John Scott, Steve Martin and seminar participants at the IFS, WIFO, University of Essex, Nova University and Bocconi University for helpful comments on an early draft. The usual disclaimer applies.
1 Introduction

It is widely believed that an industry with high levels of sunk costs is likely to be more highly concentrated than one with lower levels of sunk cost. This proposition is sometimes taken to suggest that an increase in sunk costs will lead to rise in concentration. When expressed in this form, this proposition would, for example, lead one to expect that the escalation of advertising which occurred at the end of the 1970’s in the US Car industry – an increase of more than eight fold (in nominal terms) from the early middle 1970’s through to the late middle 1990’s – would have increased the level of concentration in the industry. In fact, concentration actually fell during that period.

To understand what might underlie this puzzle, one needs to recognize that advertising can have two rather different effects on competition. On the one hand, advertising expenditures are both fixed and (usually) sunk, and this serves to limit entry and reduce the number of firms that can profitably operate in a market. On the other hand, advertising can be used by firms to attract attention to their products and induce switching behaviour by consumers. It is, therefore, conceivable that advertising can also facilitate entry, and that entrants who attempt to advertise their way into a market may partially or even totally displace incumbents, gaining enough sales revenue to cover their fixed costs even in a stagnant market. If this happens, one will observe both an increase in total industry advertising (particularly if incumbents respond to advertising led entry by increasing their own advertising) and a fall in market concentration. Roughly speaking, this is what seems to have happened in the US Car industry in the post-war period.

To understand what produced this apparently perverse outcome in the US Car industry, we need to understand how advertising affects consumer demand. This raises some tricky issues, since simply putting advertising in the consumers’ utility function is not a satisfactory way forward. In this paper, we outline a simple, relatively well known model of competition where advertising can, in principle, facilitate entry (at least temporarily). Although the model has some special assumptions, it is not a wholly implausible description of what happens in the car market. Product quality is the key driver of consumer choice in this model, while advertising plays a role in directing consumers to alternatives should they choose to switch from low to high quality products. Although it has no effect on preferences or on demand in the long run, advertising does, in this model, create an opportunity for entrants to attract buyers in the short run and, if their products are of high enough quality, to keep them in the market in the long run. The outcome of the model is a relationship between market and advertising shares and it, therefore, effectively provides the link between advertising activity and movements in industry concentration which we are seeking.

In Section 2 below, we spell out the model of the relationship between market and advertising shares that we will use in the empirical analysis, and in Section 3 we apply it to a very thin data set describing the US Car industry in the post-war period. Since most of the entrants involved in these events were foreign owned producers, the simplest level at which one can observe this competitive process in this industry is by aggregating the
data into two ‘players’: all domestic producers and all foreign producers. We report results at this level of aggregation, and then show that they are also observable at the firm level by applying the model to seven leading firms in the market (three domestic and four foreign owned). In Section 4, we pursue two further issues, which arise from using the model to interpret the data: the dynamics of the escalation of advertising which occurred with entry, and the timing of the entry challenge itself. Section 5 summarises the results and notes a number of caveats.

2 Market Shares and Advertising

To understand how an advertising war might lead to changes in market structure, we need to understand how advertising affects demand.

Advertising Shares and Market Shares

Consider the following stylisation of consumer choice. Cars are an experience good, but the characteristics of particular models change more often than particular consumers purchase them. As a consequence, there is only a limited amount of relevant (i.e. experiential) information about particular models available to consumers prior to purchase. Further, the information that a user accumulates about a particular car through own use is always incomplete. Accurately measuring the user value of some pertinent characteristic (e.g. durability or how it performs in adverse circumstances) requires extensive usage, and changes in characteristics over time means that this years new car is not exactly comparable to last years version of the same car. The implication is that dissatisfaction with last year’s car will not necessarily lead to switching behaviour when the consumer purchases a new car this year; nor, for that matter, will satisfaction necessarily guarantee repeat purchasing.

Some notation will help us to express this more precisely. Suppose that car j has a level of ‘quality’ λ_j. By construction, λ_j measures ‘quality’ in terms of repeat purchase: a ‘high quality’ car will generate a higher level of repeat purchasing than a ‘low quality’ car. A consumer who purchases j in t will, by period $t+1$, have formed a view about whether s/he is satisfied or not. Suppose that if s/he is satisfied, s/he will repeat the purchase again in $t+1$ with probability $(1 - 1/\lambda_j)$; otherwise s/he will switch to another car with probability $1/\lambda_j$. The key question is what determines the choice of a new car if the consumer elects to switch in period $t+1$. If firms do not compete on price and if quality is difficult to observe with any accuracy, then it is hard to see a ‘rational’ basis for choosing between different brands. In these circumstances, consumers may turn first to the alternatives which they are most aware of. There are many ways to measure ‘awareness’, but one obvious possibility is in terms of relative advertising intensity. If the level of advertising of car k, A_k, is high relative total market advertising, then many consumers are likely to be aware of car k and some number of them will opt for k if they become dissatisfied with car j (and more will do so than for some other car i which is advertised less intensively than car k). If all consumers behave in this way, it turns out that in the long run market shares will be proportional to advertising shares,
where Q_j is the output of firm j, A_j is total advertising by firm j, Q is total industry output, A is total industry advertising and $	heta_j \equiv \lambda_j / \sum \lambda_j (A_j / A)$ is a measure of the relative ‘quality’ of car j.

It is worth making three observations about (1). First, advertising has both a pro and an anti-competitive effect in this model. On the one hand, an entrant who can come in and claim a large enough advertising share can claim a place in the market. However, as that entrant advertises and as incumbents respond, the total volume of advertising in the market will rise, and this, in turn, increases the cost of ‘acquiring’ an advertising share of any given size. Clearly, this disadvantages entrants (because it raises the fixed and sunk costs of entry), and closes the window of opportunity which had originally facilitated their entry. In other words, the dynamics of entry competition may mean that the pro-competitive effect of advertising will be transitory; i.e. that the advertising directly and indirectly caused by the arrival of entrants (and the advertising war it sparks off) may lead to a deterioration in the initially favourable market conditions which discourages or deters subsequent entrants.

The second observation is that advertising does not work in a vacuum. In this model, advertising attracts buyers who are dissatisfied with their existing choice: the driver of switching is product quality, not advertising. A firm that advertises (relatively) heavily but sells a poor quality product will attract many new buyers (who are dissatisfied with other low quality products) but will also lose many existing buyers (who become dissatisfied with the low quality of the product). By contrast, a high quality firm that does not advertise will retain most of its existing customers but will not attract many new ones, and its market share may be higher or lower than a low quality/high advertising firm (its customer churn will, however, be lower). The model predicts that two firms with the same market share but different levels of quality will, of necessity, display different levels of advertising, and that the low quality/high advertising firm will experience more churn amongst its consumers than the higher quality firm will.

Third, it is clear from (1) that there are, in principle, many different vectors of advertising across firms which sustain the same vector of market shares: if the levels of advertising by all firms in any particular equilibrium were multiplied by the same amount, advertising, and, therefore, market shares would remain unchanged. This means that the profits of all firms at any particular equilibrium could be improved if the advertising of each fell by the same proportional amount (since this would have no effect other than reducing the fixed costs of each firm). It is not entirely clear how firms might bring about this reduction, although it is at least conceivable that a formal agreement might work. More likely is some kind of tacit understanding. Suppose that an industry is composed of a group of incumbents who are undisturbed by entry and display relatively constant market shares over a long period of time. In such a setting, mutual awareness and a common interest in keeping advertising expenditures under control might yield an outcome like (1) in which market shares are supported by relatively modest levels of...
advertising by each and every incumbent firm. The interesting thing about this outcome is that it is liable to be rather unstable. The more successful such a tacit (or, perhaps, formal) understanding is in reducing total industry advertising, the more likely it is (ceteris paribus) that entrants will be attracted to the market: the lower is total industry advertising, the less expensive it is to ‘purchase’ market share through advertising. This, of course, may set off an advertising war as incumbents respond to the encroachments of entrants.

Our final task is to translate (1) into an empirical model. Consumer behaviour of the type discussed above only generates (1) as a long run relationship, and it is easy to believe that (1) might not literally hold at every data point even if the model is correct. One easy way to generalize (1) to allow for this is to write it in an error correction framework,

\[
\Delta MS_j(t) = \phi_0 MS_j(t-1) + \phi_1 AS_j(t-1) + \phi_2 \Delta MS_j(t-1) + \phi_3 \Delta AS_j(t-1) + \mu_j(t),
\]

where \(MS_j \equiv Q_j/Q \), \(AS_j \equiv A_j/A \) and \(\mu_j(t) \) is a white noise error. Since, in equilibrium, all of the first difference terms are zero, (2) yields an estimate of \(\theta = -\phi_1/\phi_0 \). However, it may be unwise to assume as a matter of course that \(\theta \) is a constant: very large shifts in advertising shares between firms with very different quality levels (or changes in any number of pertinent exogenous variables) may cause \(\theta \) to drift over time. In the absence of any observed measures of ‘quality’, the simplest extension of the model that allows one to control for this would be to let the parameter \(\phi_1 \) evolve over time. If, for example, \(\phi_1 \) were a linear function of a deterministic time trend, then (2) would include an additional term, \(AS_j(t-1)*T \), where \(T \) is the time trend. #

There are several useful things that one can learn from estimating (2), but the main one centres on establishing whether \(\theta = 0 \) or not. Since the left hand side of (2) describes movements in market structure over time, \(\theta = 0 \) corresponds to a situation where advertising has no effect on market concentration (the null hypothesis being that market shares, and, therefore, levels of market concentration, evolve randomly). Going to the other extreme of the parameter space, if all firms enjoy the same repeat probability (and, therefore, ‘quality’ in this model), \(\theta = 1 \) and market shares and advertising shares are identical, which effectively means that movements in the level of market concentration is completely determined by advertising decisions.

3 The US Car Industry in the Post-war Period

The data that we will be using describes the evolution of market shares in the post-war US Car industry. Our data basically consists of information on output and advertising for almost all of firms active in this industry for just over 40 years. This provides information on market and advertising shares, but, as will become clear, the data set lacks the kinds of exogenous variables which one would need to track movements in ‘quality’ with accuracy, and which one would need to construct sensible alternatives to the model that we explore here. The data will tell us useful things about the \(\theta_j \), and that is about it.
Our first step is to discuss the data and provide an overview of events. Then we look at the relationship between market shares and advertising shares using (1) and (2), aggregating the data into a particularly simple form that reduces the industry to two players: domestic and foreign firms. Not only is this a roughly accurate characterization of the different groups of firms apparently responsible for the events we observe, but using a two player model makes it much easier to understand the dynamics of the market. We then disaggregate the data, and re-estimate the model on firm specific data for seven of the largest firms in the market (three domestic firms and four foreign firms). This enables us to enrich our account of the dynamics that unfolded after entry into this market, but it also shows just how robust the two player characterization is.

The data

The two features of the post-war evolution of the Car market over the period 1954-1996 that we are most interested in here, are displayed on Figure I. The first is that during the first 15 or so years of the sample period total industry advertising intensity was stable at relatively low levels. It crept up gently through to the middle 1970’s before escalating very rapidly through the 1980’s and into the 1990s: the level of nominal advertising expenditures rose by a factor of 8.73 between 1976 and 1996; real advertising expenditures (i.e. nominal advertising expenditures divided by the consumer price index) rose by a factor of 3.52. The second interesting feature of the data is that total industry advertising and industry advertising intensity (i.e. total advertising divided by sales) and the three firm concentration ratio (defined here as the sum of the shares of Ford, GM and Chrysler) are negatively correlated over the period. Much the same correlation applies between total industry advertising levels and these two concentration measures: \(-.8622\) for the three firm concentration ratio, and \(-.7529\) for the Herfindahl, while that between each concentration measure and industry advertising intensity is: \(-.7212\) and \(-.8882\) respectively.

It is, of course, possible that the apparent correlation between concentration and advertising shown on Figure I is spurious. One obvious possibility is that market size might have increased during the period, making increases in advertising profitable for firms, and, at the same time but for entirely different reasons, deconcentrating the market by creating new market segments for fringe or entrant firms to colonize. However, there is no easily discernible upward or downward trend in total industry sales from the mid-1970s until the end of the period (although there are very substantial cyclical fluctuations). The correlations between market size and the two measures of concentration are: \(-.4931\) and \(-.3367\) (which is what one expects), while the correlation between total sales and total advertising is only \(.1703\).

In fact, it is more likely that the events described on Figure I were caused by entry. As is well known, this period saw foreign owned carmakers enter the US market on a fairly large scale and make serious inroads into the share of the top three US firms. To see the role played by these entrants, it is necessary to disaggregate the data. We focus on two groups: the three US producers (GM, Ford and Chrysler, collectively labelled ‘domestic’ producers) and the major non-US (i.e. ‘foreign’) owned players (specifically: Honda,
Volkswagen, Nissan and Toyota). These two groups do not entirely exhaust the population of US Car producers and, as a consequence, the sum of their market and/or advertising shares do not sum to unity (although they average .97 and .95 respectively throughout the period). At the beginning of the period, the collective market share of domestic firms was above .95, but by the end of the period it had fallen below .65. Foreign producers began making inroads into the collective share of domestic players in the 1960’s. By 1970, their share of the market was 14%, and it rose steadily to about 35% at the end of the sample period. This invasion was led by Volkswagen, who established themselves in the US more quickly than the others, and was (jointly with Honda) the leading foreign player (from amongst the group under consideration) at the end of the period.

The last two substantial entrants in our sample period were Mazda and Mitsubishi, whose presence in the market was felt from the mid 1980’s on.

As it happens, the sharp escalation in industry advertising also dates from the late 1960s, and it occurred because both domestic and foreign owned firms increased their advertising (the correlation between the advertising of these two groups of firms is .9862). The basic story tells itself on Figure II. Both foreign and domestic firms had similar advertising intensities in 1970, but by 1973 foreign firms were advertising noticeably more intensively. Domestic firms responded and both had similar advertising intensities in 1981 and again in 1985, but after 1981 and again after 1985 foreign firms raised their advertising intensities above those of domestic rivals. Domestic firms finally caught up in 1995 and 1996, and advertised more intensively than their foreign rivals in the last two years of the sample period. The interesting thing about this escalation in advertising is that the advertising of foreign based firms rose with their total sales (the correlation is .8156) while that of domestic based producers also rose despite a fall in their sales (the correlation is -.3976). It is difficult to be absolutely sure, but this pattern is certainly consistent with the view that the advertising war which developed was initiated and sustained mainly by the aggressive market penetration goals of foreign firms.

Market and advertising shares for domestic and foreign firms

The model outlined in Section II above suggests that these movements in concentration and advertising were causally related, with the key relationship being a simple linear relation between market shares and advertising shares. When applied to aggregated data on the top three US producers, this market share equation is, of course, a concentration equation.

The basic features of the story told in Section 2 are very clearly evident in the data, as can be seen on Figure III. The simple correlation between advertising and market shares for both domestic and foreign firms is .9159 and .9590. Both series fell over time for domestic firms and both rose for foreign firms. A naive exploration of the model developed in Section 2 might start from equation (1). Simple linear regressions of market shares on advertising shares for domestic firms and foreign firms yield high R2s (.84 and .92), and the estimates of the co-efficient on advertising shares (which are naive estimates of θ) that these regressions produce are .76 and .79 for domestic and foreign firms.
firms respectively (t-values are 14.6 and 21.7). Including time trends in these regressions causes the co-efficients on advertising share to fall to .17 and .11 respectively, but both of the two co-efficients are positive and significantly different from zero, and the time trends are very significant. Further, the co-efficient on the domestic (foreign) trend is negative (positive), which is consistent with the view that the quality of foreign cars rose steadily throughout the period. Given the fact that both series trend, this is not a surprise. The implication is that at this level of aggregation, it may be easy to confound the effect of advertising share on market share with any kind of secular change (such as a change in ‘quality’) which might be accurately described using a linear time trend.

One of the more serious problems with the naive regression is a concern that advertising shares might be correlated with the residual (e.g. because of simultaneity bias), leading to biased estimates of θ. We explored several different empirical models of advertising shares, using each to develop instruments for advertising shares. The best model that we developed included two lagged dependent variables plus the growth in US GDP, total car production and total industry advertising. Aside from the lagged dependent variables, the lagged growth of domestic and foreign advertising were the most notably significant variables. Almost all of the equations of this type that we ran provided pretty good fits. Using these equations to generate instruments yielded estimates of θ which were very close to those generated by OLS regressions on the naive model (1): $\theta = .731$ (rather than .763) for domestic firms, and .840 (rather than .786) for foreign firms. Much the same results were observed in all the experiments of this type that we conducted, and we conclude that the several shortcomings of the naive estimates of θ probably do not include the problem of simultaneity bias.

As noted in Section 2, there is an implicit assumption in (1) and (2) that the returns to advertising are constant. Since domestic firms are much larger and advertise much more than foreign firms, it is possible that at least some of the movements in market share that we are observe are driven by diminishing returns (for domestic firms) or increasing returns (for foreign firms). An easy way to explore this possibility is to regress the log of market shares on the log of advertising shares. This yields naive but statistically significant estimates of .966 and .916 respectively on the returns to scale parameter (denoted ϵ in footnote #3), which is difficult to distinguish from constant returns. When a time trend is included, both co-efficients fell but remained significant. As before, the time trend has a positive slope for foreign firms and a negative slope for domestic firms. At the very least, these regression suggest that the effects of advertising on market shares advertising does not display increasing returns.

Since (1) is most reasonably thought of as a long run relationship, the error correction representation (2) may be more appropriate than naive regressions of current period advertising shares on current market shares. Table I displays estimates of two versions of (2). Recall that, in equilibrium, market shares and advertising shares are linked by a factor of proportionality, $\theta = \frac{-\varphi_1}{\varphi_0}$. In regressions (i) and (iii), this factor of proportionality is assumed to be constant; in (ii) and (iv), it is allowed to follow a deterministic trend (which gives rise to a term which is the product of advertising share and a time dummy). Since θ is a measure of ‘relative quality’, this slight generalization allows for quality differences between firms to vary over time. Focussing first on (i) and
(iii), both of the lagged market and advertising shares variables are significant, and together imply estimated values of $\theta = .723$ and $.779$ for domestic and foreign firms respectively. These estimates are very close to those obtained from the naive regressions based on (1) discussed above. Regression (iii) displays mild signs of mis-specification and suggests that the specification shown in (ii) and (iv) might be more appropriate. Unsurprisingly, the inclusion of the interactive variable reduces the t-value on lagged advertising shares, but it is clear that (iv) in particular cannot be simplified to (iii). (ii) and (iv) imply that: $\theta = .442 - .00689*T$ for domestic firms, and $\theta = .292 + .0118*T$ for foreign firms (where T is a linear time trend). The implication of these estimates is that domestic firms were initially perceived to be of higher quality, but that after 1960 the relative quality ranking reversed.

To assess the power of this particular empirical specification, it is important to compare it to something reasonably meaningful. In the case of (1) and (2), this could be the null that changes in market shares are random, meaning that market shares follow a random walk. It is easy to reject this particular null. However, market shares are bounded between zero and unity, and a more reasonable alternative null hypothesis is that all of the co-efficients in (2) save that on lagged market share are zero (this is observationally equivalent to assuming that market shares follow an AR(1) process). Here the decision is more marginal, but still reasonably clear. One way or the other, using advertising shares to explain market shares is a noticeable improvement on just presuming that market shares vary randomly or follow a simple autoregression.

The other way to assess the model is to explore a range of obvious variants. We did this in two ways. First, we experimented by adding a range of other variables in (i) – (iv), including: the rate of growth of US GDP, the rate of growth of the consumer price index and the producers price index, the rate of growth of industry output and of total industry advertising, the log of market size and dummy variables identifying the arrival of the first major foreign entrant (Volkswagon) and the last two (Mitsubishi and Mazda). Although several of these variables had a statistically significant impact on market shares, in no case did the inclusion of one or more of them lead to any qualitative differences in the inferences drawn from Table I: however one specifies (2), there seems to be a fairly close and fairly robust linear association between market shares and advertising shares for domestic and foreign firms. Working in the other direction yields much the same conclusion: namely, that the estimates shown in (i) – (iv) are fairly robust. Amongst other things, we dropped $\Delta AS(t-1)$ without having much effect on the estimates. Both $\Delta AS(t-1)$ and $\Delta MS(t-1)$ can also be dropped without much affecting estimates of the θ, and adding further lags in $\Delta AS(t)$ and $\Delta MS(t)$ has no substantive impact either. As before, however, including a time trend has a big effect: estimates of the θ drop noticeably, and the time trend is negative (positive) and significant for domestic (foreign) firms.

The second way that we generalized (1) is to rewrite it in a form which makes it look more obviously like a demand curve, namely

$$\log Q_j(t) = \varphi_0 + \varphi_1 \log Q(t) + \varphi_2 \log A_j(t) + \varphi_3 \log A(t) + \xi_j(t),$$
where $Q_j(t)$ is the output of firm j, $A_j(t)$ is its advertising, and Q and A are total industry output and advertising respectively. (3) reduces to (1) if $\varphi_1 = 1$ and $\varphi_2 = -\varphi_3$. Judged on normal statistical grounds, these restrictions cannot quite be accepted when (3) is applied to domestic or to foreign firms, but the estimates of these three parameters are not terribly different from the restrictions: for domestic firms, the estimates of (3) are: $\varphi_1 = 1.03$, and $\varphi_2 = .401$ and $\varphi_3 = -.470$; for foreign firms, $\varphi_1 = .789$ and $\varphi_2 = .441$ and $\varphi_3 = -.230$. In both cases, it seems plain that market and advertising shares are positively correlated. Since (3) looks rather like a demand curve, we also included the log of the producers price index as an additional explanatory variable. For domestic firms, this recorded a statistically significant co-efficient = –3; the producer price index was not significant in the foreign output equation.9 We also included other variables (time trends, the growth of GDP, etc), all without changing the qualitative features of the results; i.e. that estimates of (3) come close to satisfying the restrictions needed to simplify it to (1).

Market and advertising shares for seven firms

Broadly speaking, the results are very similar when (1) or (2) are applied to the seven individual firms who compose the two groups that we have been looking at. In the naive regressions based on (1), all the co-efficients on $AS(t)$ are positive and significant; with the exception of Volkswagen, naive estimates of θ for domestic firms are much lower (.458, .543 and .532 for General Motors, Ford and Chrysler respectively) than those for foreign firms (.964, .361, .760 and .834 for Honda, Volkswagen, Nissan and Toyota respectively). Adding in a time trend has (as before) the effect of substantially reducing the estimated co-efficient on $AS(t)$ in all regressions. All of the trend terms are significant; those for domestic firms are negative, while those for foreign firms are positive. More interesting are estimates of log $MS(t)$ on log $AS(t)$ (recall that these provide estimates of the returns to scale in advertising). All of these estimates (of the parameter e identified in footnote #3) are statistically significant, and those on three of the four foreign firms are very close to unity (the co-efficient on Volkswagen is .750, a little lower than the others). The three domestic firms, however, show clear signs of diminishing returns (with co-efficients of .400, .449 and .665), something that was not evident in the aggregated regressions. The implications of diminishing returns to advertising is, of course, that their advertising expenditures are less effective in generating increases in market share than the much smaller level of expenditures made by foreign firms.

Since none of the four foreign firms operated throughout the period (Volkswagen was present for 32 years, Honda for 26, Nissan for 32 and Toyota for 21), there is some possibility that sample selection bias might lead us to make erroneous inferences about the size of θ estimated from them (the regressions just discussed were run only for those years when the firms were actually present in the market). We therefore reran all of these regressions (and those reported below) on the full sample period (i.e. including the sample years when these firms were not operating) and on the sub-sample of years when the firms were present but including an inverse Mills Ratio derived from a probit regression describing market presence. Although there were some differences in the estimates of θ between the full sample and the censored sample, they do not seem to be
qualitatively important ($\theta = .51$ for the full sample for Volkswagen, and .36 for the censored sample; for Honda, the estimates were 1.02 and .964; for Nissan, they were .83 and .76; and for Toyota, they were .79 and .83 respectively). Similar observations apply for the regressions with an explicit sample selection correction.

The analogues of regressions (i) and (iii) on Table I yield estimates of $\theta = .737$, .231, .606, .981, .891, .924, and .742 respectively when applied to the seven firms. These estimates do not seem to be as closely related to the naive estimates of θ as was the case with the estimates using more aggregated data displayed on Table I. Nonetheless, it seems clear that the disaggregated estimates have the same feature as was evident on Table I, namely that the estimated values of θ are rather lower for the three domestic firms than they are for the four firms (in fact, the estimate for Ford seems to be implausibly low). Further (and as with the aggregate estimates), the estimates of θ for the three domestic firms appear to fall over time, while those of (three out of four) of the foreign firms rise over time.

The regressions on Table II show estimates generated from regressions that apply the specification used in (ii) and (iv) to General Motors, Ford, Chrysler, Honda, Volkswagen, Nissan and Toyota respectively. It is clear that, as before, including the interaction time trend tends to reduce both the size and significance of the estimated co-efficient on AS(t-1). Regressions (v) – (xi) yield estimates of $\theta = .243 - .012*T$, -.663 -.007*T, and .450 -.004*T for the three domestic firms (the Ford estimates are still rather implausible), and -.030 + .026*T, .913 -.046*T, -.190 + .028*T and .003 + .017*T (note that Nissan has an estimated value of $\theta < 0$ for the first years of the sample, while Volkswagen’s θ falls throughout the period). As before, these estimates are robust to dropping $\Delta AS(t-1)$ and/or $\Delta MS(t-1)$, or including more lagged values of each.

4 Two Further Issues

It is difficult to resist the conclusion that market and advertising shares are closely correlated in this market, and hard to argue that this correlation is spurious. Our puzzle – the observation that industry concentration fell during a period when industry advertising rose substantially – helps us understand how a rise in advertising accompanied by a change in advertising shares that is sparked by entry could induce a fall in concentration, but it leaves at least two questions in the air: what sparked the advertising war?, and what were the dynamics which drove advertising to such heights?. We briefly consider each in turn.

The timing of entry

Roughly speaking, the simple model that we have been exploring suggests that entry will occur when advertising share is ‘inexpensive’ to acquire (and, indeed, that entry will stop when the cost of acquiring advertising share rises). If, for some reason, an industry has fallen into an equilibrium with low levels of advertising, then it is likely to be vulnerable to entry. A quick glance at Figure I, however, suggests that this story is incomplete. The
US Car industry spent virtually all of the 1950’s and 1960’s in such a low level equilibrium without, however, attracting entry or allowing a substantial penetration into the market by entrants. Further, the 1950’s and 1960’s were a period of very rapid market growth, a condition which is generally thought to facilitate entry. By the early 1970’s, the market was showing some signs of levelling off, and throughout the rest of the period it certainly did not display growth rates anything like those recorded earlier in the period. Thus, the conditions were right for entry – ‘right’ in the sense of being a good time to enter and achieve a substantial market presence – in the late 1960’s when entry actually occurred, but, equally, the conditions had been right for possibly about 15–20 years before entry actually occurred.

There are at least two possible resolutions to this little puzzle. The first is to note that the time of entry into a market by a new firm often precedes the time when it begins to seriously steal share from incumbents by a considerable number of years. There are all kinds of teething troubles that new entrants face, particularly when they must design cars that will suit a new market, construct production facilities to produce these cars economically and establish their own distribution network. Our discussion of ‘entry’ in Section 3 and immediately above has effectively been in terms of the timing of market share penetration (which is what our data record), and it may well be that entry in terms of presence actually occurred when the data suggests that it ought to have. However, since our data does not record the timing of entry in terms of presence, this can only be a conjecture. A second consideration is complementary to this, and that is that entry penetration may occur when exogenous events alter cost or demand in a way that suits the entrant. Expressed in the terms of (1), this argument says that something may have occurred (e.g. the oil price shock and consequent rise in petrol prices) which raised the θ of entrants (especially those who produce small, fuel efficient cars). Increases in θ make advertising more attractive (each new buyer converted through advertising stays loyal longer the larger is θ), and that might have been enough to encourage entrants to increase their advertising and try to penetrate more deeply into the market. However, since we have no direct observations of ‘quality’ (either), this too must remain just a conjecture.

Advertising wars

The sharp rise in industry advertising shown on Figure I looks rather like an advertising war. This observation begs two further questions: how does one identify an advertising war? What is it that drives the levels of advertising up so steeply during such a war? To answer these questions, one must have a reference point, and the most natural place to start is to examine advertising choices in ‘normal’ circumstances.

The relationship captured in (1) is behavioural: it is a consequence of the fact that consumers behave in certain way and does not result from decisions by firms. In a sense, it is analogous to a conventional demand curve, and profit maximizing firms will accept it as a constraint when they choose optimum levels of advertising. The Dorfman-Steiner condition suggests that the optimal choice of advertising will set the level of advertising to be some proportion of sales, the particular proportion depending on the price and advertising elasticities of demand. This turns out to be the case even when the kind of consumer behaviour which underlies (1) occurs. Schmalensee, 1976 and 1978,
has shown that in this case a Nash equilibrium in advertising yields a vector of optimal levels of advertising, \(A^*j \), which are proportional to output choices, \(Q_j \) (the factor of proportionality depends in this case on \(\lambda_j \) and on the costs of producing higher quality products). If, as before, we do not assume that all of the data reflect optimum choices or equilibrium outcomes, then a natural way to express this first order condition is as

\[
\Delta Z_j(t) = \alpha_0 + \alpha_1 Z_j(t-1) + \varepsilon_j(t),
\]

where \(Z_j \equiv (A_j/Q_j) \), the ratio of advertising to sales and \(\varepsilon_j(t) \) is a white noise error. (4) allows actual advertising choices to (temporarily) depart from optimal choices (as might occur, for example, if there were adjustment costs associated with scaling an advertising campaign up or down). The quantity \((-\alpha_0/\alpha_1) \) is an estimate of the equilibrium advertising sales ratio for firm \(j \), and, as before, it is not necessary to assume that it is constant over time: \(\alpha_0 \) could be modelled as depending on a vector of observables, or a time trend.

Equation (4) is built on relatively simple and static foundations, and it is unlikely to be an accurate description of decisions that firms make about advertising spending when entrants are challenging incumbents and the total volume of advertising in the market is rising rapidly. It is difficult to develop a model describing how firms make decisions during an advertising war, for, in these circumstances, firms are liable to be heavily influenced by expectations about the actions of their rivals and these are not always well grounded in the fundamentals. However, there are liable to be two distinguishing feature of an advertising war: first, it is possible that the advertising expenditures of particular firms will rise even when their sales fall (a clear violation of the Dorfman-Steiner conditions), and, second, it is likely that one will firms to change their advertising spending directly in response to the actions of their rivals.

The first distinguishing feature of an advertising war can be explored by generating estimates of the quantity \((-\alpha_0/\alpha_1) \): if these are negative, then it is almost sure that a sustained departure from the ‘normal’ conditions described by Dorfman-Steiner has occurred. The second distinguishing feature can be built into (4) by generalizing it to allow firm \(j \) to respond directly to the advertising of it’s rivals. This suggests a formulation such as

\[
\Delta Z_j(t) = \alpha_0 + \alpha_1 Z_j(t-1) + \alpha_2 \Delta R_j(t-1) + \varepsilon_j(t),
\]

where \(\Delta R_j(t-1) \) is the change in the advertising activities of \(j \)’s rivals. Note that we assume that it takes one period for firms to respond to the actions of rivals. In essence, this specification allows for a much longer, much more systematic departure from equilibrium than (4) allows, and, more important, associates it with the observed actions of particular rivals. At equilibrium, \(\Delta Z_j(t) = \Delta R_j(t-1) = 0 \), and so \(A_j = (-\alpha_0/\alpha_1) Q_j \), which is consistent with the first order conditions describing the optimal choice of advertising in ‘normal’ (i.e. non-war) conditions.

To give this extension of (4) some substance, one must specify \(R_j(t) \). Possibly the simplest specification is to write \(\Delta R_j(t-1) = \Sigma \omega_k \Delta A_k(t-1) \), where the \(\omega_k \) are weights
reflecting the degree to which each rival k presents a substantive competitive challenge to j, and would be the object of econometric estimation. This specification supposes that firm j responds directly to any change in the advertising of it’s various rivals k, a course of action which seems rather naive. A more sophisticated firm might try to predict what it’s rivals are likely to do, and then respond only to departures from that prediction; i.e. it may respond only to ‘surprise’ changes in the advertising of it’s rivals. The thinking here is that firm j will understand (and, therefore, incorporate) the equilibrium behaviour of it’s rivals j in it’s own (equilibrium) advertising choices, but systematic departures from equilibrium behaviour by rivals is taken to indicate the existence of a ‘new regime’ in which advertising is being chosen strategically by rivals to increase their market shares.

One way to capture this is to imagine that firm j uses (4) to generate a predicted value of Zk -- call it Zk*(t) -- for each rival k, and then let ΔRj(t) = Σωk[Zk(t) – Zk*(t)]. In this specification, equilibrium requires two conditions: Aj = (-α0/α1) Qj and Zk(t) = Zk*(t); i.e. no firm is surprised about the behaviour of it’s rivals.

It turns out that the data are clearly consistent with the view that what we observe in the post-1970 sub-period is an advertising war, but it is very difficult to get clean estimates of the parameters describing the dynamics of that war. Figure II shows that advertising by both domestic and foreign firms rose almost exponentially over time, and this basic pattern is evident throughout the data no matter how much one disaggregates it. Amongst other things, this means that the advertising of different firms is very highly correlated over time, and this is even true when one compares first differences between firms. The simple correlation between the advertising of domestic and foreign firms is .9860; the correlation between the first difference in domestic and foreign advertising is .5081, while that between domestic and foreign advertising intensity is .9734. Regressing domestic advertising on foreign advertising yields an estimated co-efficient = 1.68 (t = 22.02) and R2 = .976. A regression in first differences yields a co-efficient = .852 (t = 3.75) and R2 = .26.

The really interesting feature of the data is that advertising by domestic firms is negatively correlated with their sales -.3941. A simple regression of domestic advertising on the sales of domestic firms for the whole sample period yields a co-efficient = -.278 (2.21) with an R2 = .104. However, repeating the levels regressions for the period before 1974 for domestic firms yields an estimated co-efficient = .016 (2.42) with R2 = .252. It seems, then, that there is a correlation between domestic advertising and sales, but only in the pre-1970s. After that advertising seems to rise while sales fall, and this generates a full sample correlation between the two which is negative. For foreign firms, the pattern is rather different. The partial correlation between sales and advertising is .8156, while a regression of advertising on sales for foreign firms over the whole period gives an estimated co-efficient = .545 (8.131) with R2 = .665. There is some evidence that the correlation between advertising and sales is weaker before 1974 than for the period as a whole, but it is hard to be sure (most of the foreign producers did not operate on any scale before 1970, and, as a consequence, there are relatively few observations on their sales and advertising in this early period). Post-1974, foreign sales and foreign advertising rose, but the latter rose more (363% between 1974 and 1996, as compared to the 134% rise in sales over the period).
It is very difficult to generate acceptable regressions describing the interaction between the advertising intensity (or total advertising expenditures) of domestic and foreign firms because the advertising of both sets of firms is so highly correlated. Table III shows two regressions based on (4) for domestic firms and two for foreign firms which explain advertising intensity. In the first (i.e. regressions (xii) and (xiv)), lagged changes in rival’s advertising are included; in the second (i.e. regression (xiii) and (xv)), lagged changes in rival’s advertising intensity are included. Two features stand out. First, it appears that domestic advertising responds to foreign advertising but not the reverse, and, second, it appears that the foreign advertising equations fit relatively poorly. We experimented with several ‘surprise’ terms, and generally speaking they had a larger and more significant impact in the domestic advertising than in the foreign advertising equation. They were not significant in either case however.13 We also replicated the regressions on Table III using more lagged dependent variables, or more lagged terms in rivals advertising. There are some signs that second and third lagged terms in domestic advertising have a bigger and more precisely determined impact on foreign advertising intensity than domestic advertising once lagged, suggesting that foreign firms may be rather slower than domestic firms to respond to rival’s advertising. Finally, we replicated all of these regressions using total nominal advertising expenditures rather than advertising intensity. Although this generated numerous small differences in the regressions shown on Table III, the basic bottom line is the same: there is at least some evidence that both domestic and foreign firms respond to changes (surprise or otherwise) in their rivals advertising. Further, in the case of domestic firms, these responses clearly lead to an escalation in advertising intensity, and to a rise in total advertising notwithstanding a modest decline in sales.

Replicating the regressions shown on Table III (plus the others alluded to above) at the level of the seven individual firms that we have focussed on is complicated by the need to specify which rivals in particular each firm responds to. This creates a major problem since advertising and advertising intensity is very highly correlated across firms (none of the partial correlations of advertising or advertising intensity between the seven firms is below .80). Unsurprisingly, many of the regressions produced rather unstable coefficients when terms in the advertising of different rival’s were included, and most of them produced very low t-statistics. It is, however, the case that all seven firms responded to the advertising of one or more of their rivals, and, further, the three domestic firms appeared to respond more to the advertising of their foreign rivals than the latter did to advertising by the three big domestic market leaders.

4 Conclusions

Our exploration of the post-War history of the US Car industry has focussed on the stylized fact displayed on Figure I, namely that there was a very sharp escalation of industry advertising which occurred at the same time as industry concentration fell. To help account for this phenomena, we outlined a model whose prime distinguishing feature is an equilibrium relationship between market and advertising shares. One interesting feature of this particular relationship is that it is consistent with many different equilibrium levels of advertising by firms in the market. As a consequence, it is not hard
to believe that the arrival of new competitors would increase the advertising of all firms operating in the market. If, in addition, these entrants are able to seize a sizeable share of the market post-entry, then one would expect to observe higher levels of industry advertising and lower levels of concentration as compared with the situation pre-entry. This story seems to be at least roughly consistent with the data, as Figures II and III show. There is almost no question that there exists a strong and pretty robust relationship between market shares and advertising in the data that we have examined. Further, there are fairly good reasons for thinking that the escalation of advertising we have observed in this industry was initiated by foreign firms, and the data provide some support for the view that total industry advertising rose sharply because firms departed from normal advertising decision rules and began to respond directly to previous increases in advertising by their rivals.

Just how plausible is this story? The entry dynamics that we have focussed on here are not peculiar to the US Car industry. Entry has been observed to provoke an advertising war in other sectors, an observation which is not inconsistent with survey evidence which suggests that the response to entry by incumbent firms (when they do, in fact, respond) is primarily by using marketing tools more extensively. When this happens, it seems clear that there is no obvious reason to expect that the resulting escalation in sunk costs will necessarily be associated with an increase in industry concentration. Although it is hard to dispute the proposition that higher levels of sunk costs are likely to be associated with higher levels of concentration across industries, the results reported in this paper suggest that increases in sunk costs in a particular sector may not induce a rise in concentration in that sector over time. In particular, the particular process by which sunk costs escalate may be an important determinant of whether concentration goes up as well; i.e. it may matter who initiates the escalation in such costs, and why. To put this point a different way, symmetric models of sunk cost competition may give a misleading guide to outcomes in markets where already established firms have to compete with later arriving entrants.

There are, of course, a number of caveats about the work that we have reported which need to be registered. Most of what we have observed is more clearly discernable in aggregated data than at the individual firm level. This is probably to be expected, and our feeling is that the kind of simple models and data which we have been using do not make enough allowances for heterogeneities between firms. This is, perhaps, most apparent in the regressions which try to trace which (if any) of it’s rivals each firm responds most to when choosing it’s advertising expenditures. We have also made limited progress in describing the mechanics of the interdependence in advertising decisions between different firms simply because the data is so co-linear. This, of course, is consistent with the view that firms match each others advertising decisions very closely, but it does make it difficult to generate precise, reliable estimates of the relevant co-efficients. The other caveat worth recording is that we have not been able to measure what is probably the most important feature of the relationship between advertising and market shares, namely those features of the product which induce switching by consumers. We have included time trends where appropriate to try to allow for the effect of changes in quality over time, but this is hardly satisfactory, not least because both market and advertising shares trend over time in our data.
One final observation is worth making. Notwithstanding it’s several shortcomings, our examination of the recent history of the US Car industry suggests quite clearly that advertising can facilitate entry, and is not, therefore, necessarily a barrier to entry.18 Certainly, it seems to be the case that foreign firms blasted their way into the US market using advertising (and perhaps by selling higher quality products). However, it is also important to resist the conclusion that advertising is necessarily pro-competitive. First, the opportunity for entrants to ‘acquire’ market share disappeared as more and more entrants took advantage of it, and as incumbents responded by increasing their own advertising. As a consequence, the burst of entry facilitated by entry was of finite length – in other words, advertising provided only transitory assistance to entrants. Second, the model which we have been using to interpret the data suggests that the key to the success of entrants was probably product quality and not advertising. What induces consumer switching in this model is product quality; advertising only affects the decision of what other product to switch to. Put another way, advertising has only a short run effect on behaviour in this model: the long run demand for a particular car depends on it’s quality and not on how much it is advertised.
Fig. I: Industry Advertising Intensity and the Three Firm Concentration Ratio

Fig. II: Domestic and Foreign Advertising Intensity
Fig. III: Foreign and Domestic Market and Advertising Shares
References

1 The assumption that firms do not compete on price is not as restrictive as it appears at first sight: much the same substantive occurs if price matching between firms occurs and eliminates all apparent quality-adjusted price differences between their different brands.

2 Rationales for this specification include the following: consumers might, for example, take advertising to be a signal of quality on the grounds that only high quality producers will be willing to advertise; see Nelson, 1974, or, following Sutton, 1991, it may be that advertising somehow raises consumers’ willingness to pay (e.g. by enhancing the product’s brand image).

3 This model is set out in Smallwood and Conlisk, 1979, and explored in Schmalensee, 1976, 1978 and 1992. These authors consider a slightly more general version of the model which yields an equilibrium relationship: \[Q_i/Q = \lambda_i A_i^{e/\sum \beta_j A_j^e} \], which allows for random choices by consumers (e = 0), diminishing returns to advertising (e < 1) and increasing returns (e > 1). Defining \(\theta_i = \lambda_i / \sum \lambda_j (A_j/A)^e \), it follows that \[Q_i/Q = \theta_i (A_i/A)^e \]. This more general model is a simple extension of (1) that is most easily explored by regressing the log of \(Q_i/Q \) on log \(A_i/A \), and testing whether the coefficient on the latter differs from unity.

4 The data that we have used comes from the following sources: new car sales data for domestic firms are from annual editions of Moody’s Industrial Manual (1954-1998) and from Wards Automotive Yearbook (1965-1998). Net sales are defined as sales minus excise taxes, sales taxes, discounts, returns and allowances. Data for the foreign firms are from Ward’s Automotive Yearbook (1965-1998). Figures for domestic car sales coincide in Moody’s Industrial Manual and in Ward’s Automotive Yearbook; advertising data for the period 1954-1998 have been provided by Ad-Age, an agency of Crain Communications Inc. These figures are total advertising expenditures and are found in the annual list of the advertising expenses of the 100 top US advertisers studied annually by Ad-Age; and GDP, CPI, and PPI (for motor vehicles) data (1982=100) are from the web site of the Bureau of Labour Statistics. It is worth noting that our advertising data do not appear to correspond closely with that reported in the FTC Line of Business data for the relevant overlap years.

5 The other domestic US players during the period (and their average market shares from 1954 until their year of exit) were: American Motors (3.2%, exit 1987), Hudson (.26%, exit 1958), Packard (.34%, exit 1959), Studebaker (1.36%, exit 1965), Nash (.54%, exit 1958), Willy’s (.08%, exit 1956) and Kaiser (.05%, exit 1956). Mitsubishi and Mazda entered too late to generate enough of a times series for serious
estimation, and the other ‘foreign’ entrants registered too small a market share to warrant inclusion. In a sense, our sample of firms is subject to ‘survivor bias’, and this probably means that our estimates of θ for these survivors is higher than the true value of θ for all firms, successful or not, in the US Car industry population.

6 It has been suggested that if firms use a simple rule of thumb to determine their advertising (say, devoting 5% of sales revenue to advertising), then market and advertising shares will be correlated by construction. This is not quite right. For a start, it requires all firms to use the same rule of thumb (i.e. the same 5%). More fundamentally, it cannot be an explanation for the correlation that we have found simply because advertising sales ratios (as we have seen) rocketed during the period without disturbing the basic market shares/advertising shares correlations reported in the text.

7 This observation seems similar to (or at least not inconsistent with) that made by Mannering and Winston, 1991, who argue that domestic US Car producers lost ‘brand loyalty’ after 1980, and provide some evidence for this by examining repeat purchase behaviour, and the movements in repeat buying patterns over time which they observe are not difficult to reconcile with the movements in ‘quality’ that appear in our regressions.

8 The rate of growth of the domestic US Car market had significant positive (negative) on domestic (foreign) market shares, while the growth of total advertising and the Mitsubishi/Mazda dummy had significant negative effects. Market size and the rate of growth of GDP had (surprisingly) no significant impact on the regressions. When an advertising share/time dummy interactive variable was included, the growth of advertising and the Mitsubishi/Mazda dummy became insignificant (not surprisingly).

9 This is not surprising as the index is dominated by domestic car prices and will not reflect the lower prices of many of the cars producers by foreign firms.

10 Note that if quality is taken to be exogenous, then advertising is the sole choice variable in this very simple model: prices are, by assumption, fixed (or firms are assumed to price match so that price is not a major basis for choice between them) and output is driven by the advertising choices of all firms at equilibrium. In fact, θ_j depends in principle on the choices made by firms which determine ‘quality’. However, these (e.g. product design) are likely to be exogenous to short term output choices.

11 This is probably too strong. Firms will not always be taken by surprise when rivals or entrants raise/lower advertising by more than would otherwise be the case, and they may, therefore, begin to respond contemporaneously with (or even before) the surprise occurs. For simplicity, we neglect this possibility. It is worth noting, however, that this assumption does lead to a considerable simplification of the econometric model that we will ultimately be using.

12 A slightly different approach to this issue is reported in Elliot, 2001, who undertakes a cointegration analysis of advertising in the US soft drinks industry. This study also suggests clear, systematic departures from ‘normal’ advertising behaviour.
In essence, we developed a range of models of domestic and foreign advertising (usually involving lagged dependent variables, lagged values of rivals advertising, lagged values of GDP and so on), and used these to generated ‘predicted’ values – the Z^*_k referred to at the end of Section II above. In most cases, the fits were pretty good, and the corresponding ‘surprise terms – the $[Z_k - Z^*_k]$ – generated positive coefficients, but the standard errors on these estimates were always very high.

For example, see Alemson, 1970, who records the impact of entry into the Australian Tobacco industry, and Geroski and Murfin, 1990 and 1991, who study the effect of entry competition on advertising in the UK Car industry. Other recent studies of the effect of advertising on entrants in particular sectors includes Leffer, 1981 and Rizzo and Zeckhauser, 1990.

Our advertising data probably understate the level of sunk costs, since expenditures on ‘quality’ are also liable to be sunk for the most part. Furthermore, if one believes that firms advertise mainly when they have a good reason to – for example, when the ‘quality’ of their product goes up – then observed expenditures on advertising will be positively correlated with unobserved (but equally sunk) expenditures on ‘quality’.

Although the relationship between advertising and concentration that we have observed seems to be inconsistent with his arguments, in fact the main thrust of Sutton’s work is on the relationship between concentration and market size, and nothing in our data is obviously inconsistent with his arguments about a lower bound to concentration in the US Car industry. Further, the nature of his argument about how endogenous sunk costs increase market concentration suggests a process by which a fragmented market creates incentives for some firms to advertise and increase their market share, particularly when market size increases (1991, pp. 48), and this too is not obviously inconsistent with our interpretation of the data. The difference is that the key actors in the US Car industry were entrants, which is, of course, why concentration – measured as the shares of the leading (i.e. domestic and incumbent) players -- fell.

Using a rather different approach to ours, Greuner et al, 2000, examine data on profits, sales and advertising in the US Car industry from 1970 to 1994 and argue that advertising does not impede entrant, not least because it transmits information. This paper also contains numerous references to the literature on the effects of advertising on entry barriers and previous work on the US Car industry.
Titles available in the series:

Number 1 Valuing the environmental impacts of open cast coalmining: the case of the Trent Valley in North Staffordshire
Andrew B Trigg and W Richard Dubourg, June 1993

Number 2 Scarcity and stability in a very simple general equilibrium model
Vivienne Brown, February 1994

Number 3 A conflict model, with rational expectations, of the disinflation of the early 1980s
Graham Dawson, February 1994

Number 4 Foreign Investment, Globalisation and International Economic Governance
Grahame Thompson, May 1994

Number 5 Testing the Small Country Hypothesis for Developing Countries
Jonathan Perraton, December 1994

Number 6 The Discovery of ‘Unpaid Work’: the social consequences of the expansion of ‘work’
Susan Himmelweit, June 1995

Number 7 Exit, Voice and Values in Economic Institutions
Graham Dawson, June 1995

Number 8 Residential Summer Schools Attendance and Students’ Assessed Performances on Open University Foundation Courses
Alan Gillie and Alan Woodley, June 1995

Number 9 Putting Words into People’s Mouths? Economic Culture and its Implications for Local Government
Maureen Mackintosh, December 1995

Number 10 What is a Fair Wage? A Critique of the Concept of the Value of Labour-Power
Susan Himmelweit, December 1995

Number 11 The Origin of the Poverty Line
Alan Gillie, December 1995

Number 12 The Determinants of Product and Process Innovations
Roberto Simonetti, Daniele Archibugi, Rinaldo Evangelista, February 1996

Roberto Simonetti, February 1996

Number 14 Utilities vs. Rights to Publicly Provided Goods: Arguments and Evidence from Health-Care Rationing
Paul Anand and Allan Wailoo, January 2000

Number 15 Proceeding to the Paddling Pool: The Selection and Shaping of Call Centre Labour
George Callaghan and Paul Thompson, January 2000

Number 16 Doing ‘Qualitative Research’ in Economics: Two Examples and Some Reflections
Elizabeth Hill and Gabrielle Meagher, November 1999

Number 17 Veblen, Bourdieu and Conspicuous Consumption
Andrew B Trigg, January 2000
Number 18 The Effect of Idiosyncratic Events on the Feedback between Firm Size and Innovation
Mariana Mazzucato, January 2000

Number 19 Non-market relationships in health care
Maureen Mackintosh and Lucy Gilson, January 2000

Number 20 Selling pollution and safeguarding lives: international justice, emissions trading and the Kyoto Protocol
Graham Dawson, October 2000

Number 21 Entrepreneurship by Alliance
Judith Mehta and Barbara Krug, September 2000

Number 22 A disorderly household - voicing the noise
Judith Mehta, October 2000

Number 23 Sustainable redistribution with health care markets?
Rethinking regulatory intervention in the Tanzanian context
Maureen Mackintosh and Paula Tibandebage, November 2000

Number 24 Surplus Value and the Keynesian Multiplier
Andrew B Trigg, October 2000

Number 25 Edwards Revised: Technical Control and Call Centres
George Callaghan and Paul Thompson, November 2000

Number 26 Social Norms, Occupational Groups and Income Tax Evasion: A Survey In The UK Construction Industry
María Sigala, November 2000

Number 27 Procedural Fairness in Economic and Social Choice: Evidence from a Survey of Voters
Paul Anand, December 2000

Number 28 Alternative rationalities, or why do economists become parents?
Susan Himmelweit, December 2000

Number 29 Agglomeration and Growth: A Study of the Cambridge Hi-Tech Cluster
Suma Athreye, December 2000

Number 30 Sources of Increasing Returns and Regional Innovation in the UK
Suma Athreye and David Keeble, January 2001

Number 31 The Evolution of the UK software market: scale of demand and the role of competencies
Suma Athreye, September 2000

Number 32 Evolution of Markets in the Software Industry
Suma Athreye, January 2001

Number 33 Specialised Markets and the Behaviour of Firms: Evidence from the UK’s Regional Economies
Suma Athreye and David Keeble, January 2001

Number 34 Markets and Feminisms
Graham Dawson, January 2001

Number 35 Externalities and the UK Regional Divide in Innovative Behaviour
Suma Athreye and David Keeble, January 2001

Number 36 Inequality and redistribution: analytical and empirical issues for developmental social policy
Maureen Mackintosh, March 2001