Wage Bargaining in an Optimal Control Framework: A Dynamic Version of the Right-to-Manage Model

Marco Guerrazzi
June 2007
Throughout the 1990s, The Open University has been developing its research capacity in economics. Economists at the OU comprise a lively and expanding group with a wide set of interests ranging from development policy to decision theory, from Marxist theories of profit to libertarian foundations of environmental policy and from econometric analysis of large data sets through institutional economics to the use of case-studies in policy formation. Nearly a 1000 students from around the world register each year to study economics courses and their needs, together with the multi-disciplinary nature of social science at the university, shape out research. Through a variety of personal and group research projects, our work makes a strong contribution to areas like business, public policy and even philosophy where sharply focused analysis can inform decision-making as well as contribute to scientific progress.

In 1999, approximately £250,000 million worth of externally funded grants (3 from the ESRC) were held by discipline members, some of whom also act as consultants to national and international bodies. Approximately half a dozen students are currently reading for doctorates with members of the discipline and we are always interested in proposals from colleagues or potential students who would like to do research with us.

The papers contain results of economic research which are the sole responsibility of the authors. Opinions expressed in these papers are hence those of the authors and do not necessarily reflect views of the University.
Wage Bargaining in an Optimal Control Framework:
A Dynamic Version of the Right-to-Manage Model*

Marco Guerrazzi†
Department of Economics
University of Pisa

Abstract

This paper aims to represent wage bargaining as an optimal control problem. Specifically, by assuming that employment follows a stock adjustment principle towards the level that maximises profits, i.e., towards labour demand, we build an intertemporal optimising model in which the real wage is continuously set by an infinitely-lived omniscient arbitrator that is called in to resolve the dispute between the workers and the employers. Our theoretical proposal allows to show that unions may speed up the adjustment to equilibrium and it suggests that standard (static) models may understake the distortions implied by wage bargaining.

JEL Classification: C61, E24
Keywords: Wage Bargaining, Optimal Control Theory, Right-to-Manage Model and Numerical Solutions

1 Introduction

There are two main approaches to modelling the bargaining behaviour as it was pioneered by Nash (1950, 1953): the axiomatic approach and the game-theoretic approach. The former aims to find the weak set of axioms under which a unique outcome can be found1.

*This paper has been developed while I was visiting the Department of Economics of the Open University, Walton Hall, Milton Keynes, MK7 6AA (UK).
†Research Fellow at Department of Economics, University of Pisa, via Serafini n. 3, 56124 Pisa (Italy), e-mail guerrazzi@ec.unipi.it
1See, for example, Peters (1992).
The latter aims to build plausible non-cooperative games and determine - through their solution - the actual outcome of the bargaining process\(^2\).

The negotiation between management and workers concerning wages is probably one of the most recurring application of the bargaining theory. In this field of theoretical labour economics, there are two competing framework to model wage bargaining, \textit{i.e.}, the right-to-manage model and the efficient bargaining model. In the former, the union and the representative firm bargain over the wage while the employment is unilaterally chosen by the employer. In the latter, the union and the firm bargain simultaneously over the wage and employment. An excellent overview is given by Booth (1995).

Most of the models of collective bargaining are static in the sense that they do not explicitly consider the dynamic implication of negotiations on wages and employment. Of course, there are some good exceptions. Specifically, the seminal work by Booth and Schiantarelli (1987) provides a dynamic analysis of the monopoly union model developed with optimal control techniques aimed at assessing the employment effects of a reduction of the standard working week. Moreover, there is a paper by Kidd and Oswald (1987) that builds a dynamic model developed within an optimal control framework in which an utilitarian union pick a time path for employment (and, implicitly, the wage) by tacking into account its membership dynamics\(^3\). Finally, we find the work by Lockwood and Manning (1989) that derives a dynamic version of the right-to-manage and efficient bargaining model by exploiting dynamic programming techniques.

To our knowledge, the present contribution is the first attempt to model wage bargaining as a continuous process in an optimal control framework. For reasons of analytical tractability, this task is carried out in the context of the right-to-manage model. Specifically, we develop an intertemporal optimisation model developed in continuous time in which an infinitely-lived arbitrator is called to choose the real wage rate by tacking into account that employment adjusts towards the appropriate level that satisfies labour demand. This framework allows for a straightforward derivation of an explicit dynamic law for the real wage rate and a sharp analysis of the dynamic properties of an economy in which the employment (wage) path is affected by the time path of the wage (employment).

The remainder of the paper is arranged as follows. Section 2 presents the model. Section 3 concludes.

\(^2\)See, for example, Sutton (1986).

\(^3\)Kidd and Oswald (1987) builds also a dynamic version of the efficient bargaining model in which wages result in being time-independent.
2 The Model

By following the principles of the optimal control theory, we develop an intertemporal optimisation model in which employment adjusts towards the level desired by employers, i.e., towards labour demand. Therefore, employment dynamics derives from the standard profit-maximising behaviour assumption. In this sense, our model can be thought as a microfoundation of a supply-constrained equilibrium as described by Solow and Stiglitz (1968).

A distinctive feature of the present contribution is that the real wage is continuously set by an infinitely-lived omniscient arbitrator. Specifically, in each instant, our arbitrator is assumed to choose the real wage rate by weighting the objective functions of a group of identical (risk-averse) unionised workers and a representative firm. Our approach seems to provide a well-tested tool for describing the behaviour of a mediator whose job is precisely to settle a stream of bargaining conflicts. In other words, we view wage bargaining as a continuous process in which consecutive agreements take place while the parties’ underlying opportunities constantly change. Thereafter, in contrast to the traditional approach, which assumes the presence of a single and constant set of payoff and predicts a single agreement, in our framework the parties’s set of opportunities changes continuously over time and the solution specifies the whole path of agreements. Similar arguments may be found in Raiffa (1953) and, more recently, in Wiener and Winter (1998).

2.1 Employment Dynamics

In our framework, employment \((L)\) adjusts towards the appropriate level desired by employers. In other words, we are making the \textit{ad hoc} assumption that employment follows a stock adjustment principle, whereby a fixed fraction of the gap between the equilibrium and the actual level of employment is closed at each point of time.

Suppose that the production function has a quadratic specification:

\[
Y = \alpha_1 L - \alpha_2 L^2 \quad \alpha_1 > 0, \ \alpha_2 > 0
\]

As it will become apparent, a quadratic utility function is necessary to preserve the concavity of the Hamiltonian in the optimal control problem.

Under competitive conditions, labour demand has the following linear specification:

\[
w = \alpha_1 - 2\alpha_2 L
\]

where \(w\) is the real wage.
Given (2), the dynamic law which describes the employment evolution is the following:

\[
\dot{L} = \theta \left(\frac{\alpha_1 - w}{2\alpha_2} - L \right)
\]

(3)

where \(\theta \) is an attrition parameter.

Obviously, the stationary locus for \(L \), i.e., the pairs \((L, w)\) such that \(\dot{L} = 0 \), is downward sloped.

In the remainder of the paper, we will make the convenient assumption that

\[
\alpha_1 = 1 + 2\alpha_2
\]

(4)

Given an inelastic labour supply \(L^s \) normalised to unity in each period, (4) suggests that the real wage that clears the labour market is equal to 1. Obviously, \(u = 1 - L \) provides the corresponding rate of unemployment. See figure 1.

\[\text{Figure 1: The stationary locus for employment}\]

2.2 Wage Bargaining as an Optimal Control Problem

A distinguishing feature of the present contribution is that \(w \) is continuously set by an omniscient arbitrator by following the principles of the optimal control theory\(^4\). In other words, we interpret the solution of the dynamic system made up of the control variable

\(^4\)See Koopmans (1965).
(the wage) and the state variable (the employment) that results from a well-specified optimal control problem as the potential outcome of the bargaining process.

The first step of this theoretical exercise is the definition of the instantaneous preferences of the objective arbitrator that is called in to resolve the dispute between the workers and the firm. Given our purposes, a sensible choice is certainly a (linear) weighted average between the net gain of the union \((U)\) and the net gain of the representative employer \((\pi)\). Therefore, the real wage is assumed to be set through the continuous maximisation of the following expression:

\[
\Omega \equiv \gamma \pi + (1 - \gamma) U \quad 0 < \gamma < 1 \tag{5}
\]

where \(\gamma\) represents the relative bargaining strength of the firm.

The linear bargaining solution in (7) is useful in order to preserve analytical tractability. Moreover, it allows for the same comparative statics results for a change in \(\gamma\) as would be obtained in more conventional bargaining solutions\(^5\).

The net gains of the two parties are represented in a conventional way, i.e.,

\[
\pi = (1 + 2\alpha_2 - w) L - \alpha_2 L^2 \quad \text{and} \quad U = L (u(w) - u(b)) \tag{6}
\]

where \(u(\cdot)\) is the utility function of individual worker and \(b\) is its reservation wage.

The reading of the expressions in (6) is straightforward. On the one hand, the net gain for the firm is given by the level of profits in real terms. On the other hand, the net gain for the union is given by the expected utility of its representative member\(^6\).

Given (5) and (6), our optimal control problem becomes the following:

\[
\max_w \int_0^{+\infty} e^{-\rho t} \left(\gamma \pi + (1 - \gamma) U \right) dt \quad \text{s.to} \quad \dot{L} = \theta \left(\frac{1 + 2\alpha_2 - w}{2\alpha_2} - L \right) \tag{7}
\]

where \(\rho\) is the rate of time preferences of the arbitrator.

Notice that whenever \(\gamma = 0\) our framework provides a version of the monopoly union model.

The present-value Hamiltonian is given by

\(^6\)The expressions in (6) suggest that the outside option of the bargaining is zero for the firm and \(u(b)\) for the union. Moreover, we are implicitly assuming that all the labour force is unionised.
\[H_S = \Omega + \Lambda \theta \left(\frac{1 + 2\alpha_2 - w}{2\alpha_2} - L \right) \]

(8)

where \(\Lambda \) is the costate variable.

The f.o.c. for \(w \) is the following:

\[(1 - \gamma) L u'(w) = \gamma L + \Lambda \frac{\theta}{2\alpha_2} \]

(9)

The result in (9) suggests that in each instant the real wage will be set by equalising the proportional marginal benefit of the union to the proportional marginal benefit of the firm \textit{augmented} by shadow-value of the employment variation. Obviously, each marginal benefit is weighted by the respective bargaining strength of the two parties.

Along the optimal path, \(\Lambda \) has to satisfy the following differential equation:

\[\dot{\Lambda} = \Lambda (\rho + \theta) - \Omega_L \]

(10)

where \(\Omega_L = \frac{\partial \Omega}{\partial L} \).

By exploiting the results in (9) and (10) it is possible to derive a non-linear law of motion for the real wage, \textit{i.e.},

\[\dot{w} = \frac{2\alpha_2 \Phi \left(L (\rho + \theta) - \dot{L} \right) - \theta \Omega_L}{2\alpha_2 L (1 - \gamma) u''(w)} \]

(11)

where \(\Phi = \frac{\partial \Omega}{\partial w} \frac{1}{L} \).

Notice that whenever the firm has all the bargaining power, \textit{i.e.}, \(\gamma = 1 \), or the workers are risk-neutral, \textit{i.e.}, \(u''(w) = 0 \), (11) implies an explosive dynamics for \(w \).

Finally, the transversality condition is the following:

\[\lim_{t \to +\infty} e^{-\rho t} \Lambda(t) L(t) = 0 \]

(12)

2.2.1 Steady-State

On the one hand, the equality \(\dot{L} = 0 \) implies that

\[w = 1 + 2\alpha_2 (1 - L) \]

(13)

On the other hand, \(\dot{w} = 0 \) implies that
\[2\alpha_2 \Phi \left(L \left(\rho + \theta \right) - L \right) = \theta \Omega_L \]

(14)

Given the definitions of Φ and Ω_L, (13) can be substituted in (14) to yield a function which depends only on L, i.e.,

\[
(1 - \gamma) u'(1 + 2\alpha_2 (1 - L)) - \gamma) L = \frac{\theta (1 - \gamma)}{2\alpha_2 (\rho + \theta)} (u(1 + 2\alpha_2 (1 - L)) - u(b))
\]

(15)

By assuming that workers are risk-averse, i.e., $u(w) = w^\beta$, $0 < \beta < 1$, (15) can be written as

\[
(1 - \gamma) \beta (1 + 2\alpha_2 (1 - L))^{\beta-1} - \gamma) L = \frac{\theta (1 - \gamma)}{2\alpha_2 (\rho + \theta)} (1 + 2\alpha_2 (1 - L))^{\beta} - b^\beta)
\]

(16)

Notice that the expression on the left-hand side of (16) is a parabolic function with two real roots, i.e., 0 and $\left(2\alpha_2 - \left(\frac{1-\gamma)\beta}{\gamma} \right)^{1-\beta} + 1 \right) / 2\alpha_2$ whose derivative is positive for $L \geq 0$. By contrast, the expression on the right-hand side is a decreasing monotonic function with a positive intercept given by $\theta (1 - \gamma) \left((1 + 2\alpha_2)^\beta - b^\beta \right) / 2\alpha_2 (\rho + \theta)$. Therefore, we may conclude that it exists a positive meaningful stationary solution (L^*, w^*). A graphical outlook is given in figure 2.

Figure 2: The steady-state
2.2.2 Local Dynamics

By assuming that workers are risk-averse, *i.e.* \(u(w) = w^\beta, 0 < \beta < 1 \), the linear expansion of our dynamic system around a generic stationary solution \((L^*, w^*)\) following:

\[
\begin{pmatrix}
\dot{w} \\
\dot{L}
\end{pmatrix} =
\begin{bmatrix}
\hat{j}_{1,1} & \hat{j}_{1,2} \\
-\frac{\theta}{2\alpha_2} & -\theta
\end{bmatrix}
\begin{pmatrix}
w - w^* \\
L - L^*
\end{pmatrix}
\]

(17)

where:

\[
\hat{j}_{1,1} = \frac{(\rho + \theta) \left((1 - \gamma)(1 - \beta) \beta + (\beta - 2) \Phi^* (w^*)^{1-\beta} \right)}{(1 - \gamma)(1 - \beta) \beta} + \frac{\theta \left((w^*)^\beta - b^\beta \right) (2 - \beta)}{2\alpha_2 (1 - \beta) \beta L^*_S (w^*)^{1-\beta}}
\]

(18)

\[
\hat{j}_{1,2} = \frac{-\theta \Phi^* (w^*)^{2-\beta}}{(1 - \gamma)(1 - \beta) \beta L^*} - \frac{\theta \Phi^* (w^*)^{2-\beta}}{2\alpha_2 (1 - \gamma)(1 - \beta) \beta L^*} \left(\frac{2\alpha_2 \gamma L^* (1 - \gamma)(1 - \beta) \beta L^*}{2\alpha_2 (1 - \gamma)(1 - \beta) \beta L^*} \right)
\]

(19)

Given the sign of the elements of the Jacobian matrix in (17), it can be shown that the stationary solution \((L^*, w^*)\) is represented by a saddle point. This means that there will be only one trajectory that satisfies (3) and (11) which converges to steady-state while all the others diverge. In other words, in our bargaining model the equilibrium path is locally determinate, *i.e.* there will be a unique \(w_0 \) in the neighborhood of \(w^*_S \) that generates a trajectory converging to \((L^*, w^*)\). This value of \(w_0 \) should be selected in order to satisfy the transversality condition in (12) and it will place the system on the stable branch of the saddle point \((L^*, w^*)\).

Moreover, given that \(\hat{j}_{1,1} > 0 \) and \(\hat{j}_{1,2} < 0 \) the slope of stationary locus for \(w \), *i.e.*, the pair \((L, w)\) such that \(\dot{w} = 0 \), satisfies - at least in the neighborhood of the steady-state - what Solow and Stiglitz (1968, pg. 547) call the “natural presumption” about real wage bargaining. Specifically, the sign of the elements in (18) and (19) show that the \(\dot{w} = 0 \) locus crosses the \(\dot{L} = 0 \) locus with a positive slope. This means that in the neighborhood of \((L^*, w^*)\) a higher value of \(w \) is consistent with a stable real wage only at a lower unemployment rate.

2.3 Some Numerical Examples

In order to have a better understanding of the model’s local dynamics and confirm the analytical results derived above, we carry out some numerical simulations. Specifically, by

7The MATLAB 6.5 code used in this paper is available from the author upon request.
using the configuration of parameters described in Appendix, we calculate the stationary solution of our dynamic system and the characteristic roots of the Jacobian matrix in (17) for different values of γ. Some results are collected in Table 1.

<table>
<thead>
<tr>
<th>γ</th>
<th>L^*</th>
<th>w^*</th>
<th>r_1</th>
<th>r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.4395</td>
<td>1.5605</td>
<td>0.8609</td>
<td>-0.9506</td>
</tr>
<tr>
<td>0.05</td>
<td>0.4555</td>
<td>1.5445</td>
<td>0.8283</td>
<td>-0.9109</td>
</tr>
<tr>
<td>0.10</td>
<td>0.4735</td>
<td>1.5265</td>
<td>0.7973</td>
<td>-0.8668</td>
</tr>
<tr>
<td>0.15</td>
<td>0.4965</td>
<td>1.5035</td>
<td>0.7579</td>
<td>-0.8179</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5245</td>
<td>1.4755</td>
<td>0.7158</td>
<td>-0.7632</td>
</tr>
<tr>
<td>0.25</td>
<td>0.5595</td>
<td>1.4405</td>
<td>0.6703</td>
<td>-0.7019</td>
</tr>
<tr>
<td>0.30</td>
<td>0.6065</td>
<td>1.3935</td>
<td>0.6153</td>
<td>-0.6329</td>
</tr>
<tr>
<td>0.35</td>
<td>0.6695</td>
<td>1.3305</td>
<td>0.5553</td>
<td>-0.5550</td>
</tr>
<tr>
<td>0.40</td>
<td>0.7615</td>
<td>1.2385</td>
<td>0.4830</td>
<td>-0.4673</td>
</tr>
<tr>
<td>0.45</td>
<td>0.9035</td>
<td>1.0965</td>
<td>0.3978</td>
<td>-0.3699</td>
</tr>
<tr>
<td>0.50</td>
<td>1.1415</td>
<td>0.8585</td>
<td>0.2931</td>
<td>-0.2678</td>
</tr>
</tbody>
</table>

Table 1: Numerical Simulations

The results in Table 1 suggests some straightforward conclusions. First, lower values of γ leads to higher values of the wage and the unemployment rate. This result is in perfect consonance with the standard (static) right-to-manage model. However, if the firm becomes too strong our model may deliver bargaining solutions which are not plausible because they imply a value of the real wage lower than the union’s outside option that we assumed to equal the workers’ reservation wage\(^8\). Specifically, if we set $b = 1$, then the wage outcome of the bargaining process cannot be lower of the full employment retribution. By using the configuration of parameters described in Appendix, this is what happens when the firm and the union have the same bargaining strength\(^9\).

Moreover, each stationary solution (L^*, w^*) is characterised by two real eigenvalues of opposite sign. Obviously, this confirms that in the neighbourhood of the steady-state there is a saddle path. This path is the only one the satisfies the transversality condition in (12) and guarantees the non-negativity of L and w.

Finally, the value of the (negative) convergent root is a decreasing function of the bargaining strength of the firm. This result suggests that trade unions may speed up the

\(^8\)This result is due to the linear bargaining solution adopted in (5).

\(^9\)Moreover, notice that the monopoly union version of our model ($\gamma = 0$) does not provide a bargaining solution below the firm’s outside option ($\pi = 0$).
adjustment to equilibrium. The same counter-evident conclusion is reached in the dynamic programming right-to-manage model proposed by Lockwood and Manning (1989).

2.4 The Dynamic Model *versus* the Static Model

Before concluding, it may be of some interest to make a comparison between the wage-employment outcomes of our dynamic model and a companion static model that exploits the same linear bargaining solution. Specifically, we may be interested in comparing the results collected in Table 1 with the solutions of the following problem:

\[
\max_w \gamma ((1 + 2\alpha - w) L - \alpha_2 L^2) + (1 - \gamma) L \left(w^\beta - b^\beta \right)
\]

s.t.

\[
w = 1 + 2\alpha_2 (1 - L)
\]

The f.o.c. for \(w \) is given by

\[
\left(\frac{1 + 2\alpha - w^*_s}{2\alpha_2} \right)^{\beta} \left(w^*_s \right)^{\beta - 1} - \frac{\left(w^*_s \right)^{\beta} - b^\beta}{2\alpha_2} = \frac{\gamma}{1 - \gamma} \left(\frac{1 + 2\alpha - w^*_s}{2\alpha_2} \right)
\]

By using the configuration of parameters described in Appendix, we calculate some optimal pair \((L^*_s, w^*_s)\) for different values of \(\gamma\). Some results are collected in Table 2.

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(L^*_s)</th>
<th>(w^*_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.5045</td>
<td>1.4955</td>
</tr>
<tr>
<td>0.05</td>
<td>0.5205</td>
<td>1.4795</td>
</tr>
<tr>
<td>0.10</td>
<td>0.5385</td>
<td>1.4615</td>
</tr>
<tr>
<td>0.15</td>
<td>0.5605</td>
<td>1.4395</td>
</tr>
<tr>
<td>0.20</td>
<td>0.5875</td>
<td>1.4125</td>
</tr>
<tr>
<td>0.25</td>
<td>0.6215</td>
<td>1.3785</td>
</tr>
<tr>
<td>0.30</td>
<td>0.6655</td>
<td>1.3345</td>
</tr>
<tr>
<td>0.35</td>
<td>0.7235</td>
<td>1.2765</td>
</tr>
<tr>
<td>0.40</td>
<td>0.8045</td>
<td>1.1955</td>
</tr>
<tr>
<td>0.45</td>
<td>0.9225</td>
<td>1.0775</td>
</tr>
<tr>
<td>0.50</td>
<td>1.1095</td>
<td>0.8905</td>
</tr>
</tbody>
</table>

Table 3: The static model

A straightforward comparison between the results in Tables 1 and 2 suggests that the static model may understate the distortions caused by wage bargaining. This conclusion is at odd with respect to the findings in Kidd and Oswald (1987).
3 Concluding Remarks

This paper aimed to build a dynamic model in which wage bargaining were represented as a continuous process in an optimal control problem. This task has been carried out by building a dynamic version of the right-to-manage model in which an infinitely-lived omniscient arbitrator continuously chooses the real wage rate by tacking into account that employment adjusts towards labour demand.

Our theoretical proposal allowed for a straightforward derivation of a dynamic law for the real wage rate which imposed some interesting restrictions to the model. Specifically, we found that if the union has no bargaining power and/or workers are risk-neutral, the rules of optimal control deliver an explosive dynamics for the real wage. Moreover, our framework allowed for a sharp analysis of the stationary solution and local dynamics of the employment and the real wage. Specifically, under quite general conditions, our model displayed a unique stationary solution characterised by a determined equilibrium trajectory. Furthermore, in the neighbourhood of the steady-state, our dynamic law for real wages verified the Solow and Stiglitz’s (1968) “natural presumption” on real wage bargaining.

Finally, by resorting to some numerical simulations, we shown that in our framework unions may enhance the adjustment to equilibrium and that standard static models of bargaining my understate the distortions implied by wage negotiations.

The results collected in this paper have to be though as very preliminary. By following Solow and Stiglitz (1968), an interesting theoretical development should be the concern of an employment dynamics that arises from the goods market rationing. As in the present contribution, aggregate supply may derived from the standard profit-maximising behaviour assumption. By contrast, aggregate demand could be obtained by resorting to the Cambridge theory of distribution. Therefore, aggregate spending would result in depending on the different propensities to save and spend wage incomes and profits. This will be done in later work.

4 Appendix

4.1 The Parametrisation of the Model

The numerical simulations in Section 2.3 are carried out by using the set of parameters in Table 3.

\[\text{10}\text{See Kaldor (1955-1956).}\]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2</td>
<td>productivity parameter</td>
<td>0.5</td>
</tr>
<tr>
<td>θ</td>
<td>labour market attrition</td>
<td>0.10</td>
</tr>
<tr>
<td>ρ</td>
<td>discount rate</td>
<td>0.03</td>
</tr>
<tr>
<td>b</td>
<td>reservation wage</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>risk-aversion parameter</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 3: The parameters of the model

References

Titles available in the series:

Number 1 Valuing the environmental impacts of open cast coalmining: the case of the Trent Valley in North Staffordshire
 Andrew B Trigg and W Richard Dubourg, June 1993

Number 2 Scarcity and stability in a very simple general equilibrium model
 Vivienne Brown, February 1994

Number 3 A conflict model, with rational expectations, of the disinflation of the early 1980s
 Graham Dawson, February 1994

Number 4 Foreign Investment, Globalisation and International Economic Governance
 Grahame Thompson, May 1994

Number 5 Testing the Small Country Hypothesis for Developing Countries
 Jonathan Perraton, December 1994

Number 6 The Discovery of ‘Unpaid Work’: the social consequences of the expansion of ‘work’
 Susan Himmelweit, June 1995

Number 7 Exit, Voice and Values in Economic Institutions
 Graham Dawson, June 1995

Number 8 Residential Summer Schools Attendance and Students’ Assessed Performances on Open University Foundation Courses
 Alan Gillie and Alan Woodley, June 1995

Number 9 Putting Words into People’s Mouths? Economic Culture and its Implications for Local Government
 Maureen Mackintosh, December 1995

Number 10 What is a Fair Wage? A Critique of the Concept of the Value of Labour-Power
 Susan Himmelweit, December 1995

Number 11 The Origin of the Poverty Line
 Alan Gillie, December 1995

Number 12 The Determinants of Product and Process Innovations
 Roberto Simonetti, Daniele Archibugi, Rinaldo Evangelista, February 1996

 Roberto Simonetti, February 1996

Number 14 Utilities vs. Rights to Publicly Provided Goods: Arguments and Evidence from Health-Care Rationing
 Paul Anand and Allan Wailoo, January 2000

Number 15 Proceeding to the Paddling Pool: The Selection and Shaping of Call Centre Labour
 George Callaghan and Paul Thompson, January 2000

Number 16 Doing ‘Qualitative Research’ in Economics: Two Examples and Some Reflections
 Elizabeth Hill and Gabrielle Meagher, November 1999

Number 17 Veblen, Bourdieu and Conspicuous Consumption
 Andrew B Trigg, January 2000
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>The Effect of Idiosyncratic Events on the Feedback between Firm Size and Innovation</td>
<td>Mariana Mazzucato</td>
<td>January 2000</td>
</tr>
<tr>
<td>19</td>
<td>Non-market relationships in health care</td>
<td>Maureen Mackintosh and Lucy Gilson</td>
<td>January 2000</td>
</tr>
<tr>
<td>20</td>
<td>Selling pollution and safeguarding lives: international justice, emissions trading and the Kyoto Protocol</td>
<td>Graham Dawson</td>
<td>October 2000</td>
</tr>
<tr>
<td>21</td>
<td>Entrepreneurship by Alliance</td>
<td>Judith Mehta and Barbara Krug</td>
<td>September 2000</td>
</tr>
<tr>
<td>22</td>
<td>A disorderly household - voicing the noise</td>
<td>Judith Mehta</td>
<td>October 2000</td>
</tr>
<tr>
<td>23</td>
<td>Sustainable redistribution with health care markets?</td>
<td>Maureen Mackintosh and Paula Tibandebage</td>
<td>November 2000</td>
</tr>
<tr>
<td>24</td>
<td>Surplus Value and the Keynesian Multiplier</td>
<td>Andrew B Trigg</td>
<td>October 2000</td>
</tr>
<tr>
<td>25</td>
<td>Edwards Revised: Technical Control and Call Centres</td>
<td>George Callaghan and Paul Thompson</td>
<td>November 2000</td>
</tr>
<tr>
<td>26</td>
<td>Social Norms, Occupational Groups and Income Tax Evasion: A Survey In The UK Construction Industry</td>
<td>Maria Sigala</td>
<td>November 2000</td>
</tr>
<tr>
<td>28</td>
<td>Alternative rationalities, or why do economists become parents?</td>
<td>Susan Himmelweit</td>
<td>December 2000</td>
</tr>
<tr>
<td>30</td>
<td>Sources of Increasing Returns and Regional Innovation in the UK</td>
<td>Suma Athreye and David Keeble</td>
<td>January 2001</td>
</tr>
<tr>
<td>31</td>
<td>The Evolution of the UK software market: scale of demand and the role of competencies</td>
<td>Suma Athreye</td>
<td>September 2000</td>
</tr>
<tr>
<td>32</td>
<td>Evolution of Markets in the Software Industry</td>
<td>Suma Athreye</td>
<td>January 2001</td>
</tr>
<tr>
<td>33</td>
<td>Specialised Markets and the Behaviour of Firms: Evidence from the UK’s Regional Economies</td>
<td>Suma Athreye and David Keeble</td>
<td>January 2001</td>
</tr>
<tr>
<td>34</td>
<td>Markets and Feminisms</td>
<td>Graham Dawson</td>
<td>January 2001</td>
</tr>
<tr>
<td>35</td>
<td>Externalities and the UK Regional Divide in Innovative Behaviour</td>
<td>Suma Athreye and David Keeble</td>
<td>January 2001</td>
</tr>
<tr>
<td>36</td>
<td>Inequality and redistribution: analytical and empirical issues for developmental social policy</td>
<td>Maureen Mackintosh</td>
<td>March 2001</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Authors/References</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Modelling the Dynamics of Industry Populations</td>
<td>Mariana Mazzucato and P A Geroski, January 2001</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>The Determinants of Stock Price Volatility: An Industry Study</td>
<td>Mariana Mazzucato and Willi Semmler, February 2001</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Surplus Value and the Kalecki Principle in Marx’s Reproduction Schema</td>
<td>Andrew B Trigg, March 2001</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Risk, Variety and Volatility in the Early Auto and PC Industry</td>
<td>Mariana Mazzucato, March 2003</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Making visible the hidden economy: the case for gender impact analysis of economic policy</td>
<td>Susan Himmelweit, August 2001</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Learning and the Sources of Corporate Growth</td>
<td>Mariana Mazzucato and P A Geroski, June 2001</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Social Choice, Health and Fairness</td>
<td>Paul Anand, September 2002</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>The Integration of Claims to Health-Care: a Programming Approach</td>
<td>Paul Anand, November 2002</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Pasinetti, Keynes and the principle of Effective Demand</td>
<td>Andrew B Trigg and Frederic S Lee, June 2003</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Capabilities and Wellbeing: Evidence Based on the Sen-Nussbaum Approach to Welfare</td>
<td>Paul Anand, Graham Hunter and Ron Smith, January 2004</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Entry, Competence-Destroying Innovations, volatility and growth: Lessons from different industries</td>
<td>Mariana Mazzucato, June 2004</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Taking risks with ethical principles: a critical examination of the ethics of ‘ethical investment’</td>
<td>Graham Dawson, November 2004</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Innovation and Idiosyncratic Risk: an Industry & Firm Level Analysis</td>
<td>Mariana Mazzucato and Massimiliano Tancioni, November 2005</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Industrial Concentration in a Liberalising Economy: a Study of Indian Manufacturing</td>
<td>Suma Athreye and Sandeep Kapur, October 2004</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Creating Competition? Globalisation and the emergence of new technology producers</td>
<td>Suma Athreye and John Cantwell, October 2005</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Does International Trade Transfer Technology to Emerging Countries? A Patent Citation Analysis</td>
<td>Elif Bascavusoglu, August 2006</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>55</td>
<td>Stock Price Volatility and Patent Citation Dynamics: the case of the pharmaceutical industry</td>
<td>Mariana Mazzucato and Massimiliano Tanconi</td>
<td>December 2006</td>
</tr>
<tr>
<td>57</td>
<td>Innovation and Firm Growth in High-Tech Sectors: A Quantile Regression Approach</td>
<td>Alex Coad (CES-Matisse) and Rekha Rao (LEM)</td>
<td>January 2007</td>
</tr>
<tr>
<td>58</td>
<td>Estimating Linear Birth Cohort Effects. Revisiting the Age-Happiness Profile</td>
<td>Cristina Santos</td>
<td>January 2007</td>
</tr>
<tr>
<td>59</td>
<td>Prices of Production are Proportional to Real Costs</td>
<td>Ian Wright</td>
<td>January 2007</td>
</tr>
<tr>
<td>60</td>
<td>Temporary Work in Tuscany: a Multinomial Nested Logit Analysis</td>
<td>Lorenzo Corsini (Pisa University) and Marco Guerrazzi (Pisa University)</td>
<td>May 2007</td>
</tr>
</tbody>
</table>